6.4 Factoring and Solving Polynomial Equations

- **Goals** Factor polynomial expressions.
 - Use factoring to solve polynomial equations.

Your Notes

VOCABULARY

Factor by grouping A method used to factor some polynomials with pairs of terms that have a common monomial factor. The pattern is ra + rb + sa + sb =r(a + b) + s(a + b) = (r + s)(a + b).

Quadratic form The form $au^2 + bu + c$ where *u* is any expression in *x*

SPECIAL FACTORING PATTERNS

Sum of Two Cubes $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ Example $x^{3} + 8 = (x + 2)(\underline{x^{2} - 2x + 4})$ Difference of Two Cubes $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$ Example $8x^{3} - 1 = (2x - 1)(\underline{4x^{2} + 2x + 1})$

Example 1 Factoring the Sum or Difference of Cubes

Factor each polynomial.

a.
$$x^{3} - 64 = x^{3} - 4^{3}$$

$$= (x - 4)(x^{2} + 4x + 16)$$
b. $54y^{4} + 16y = 2y(27y^{3} + 8)$

$$= 2y[(3y)^{3} + 2^{3}]$$

$$= 2y(3y + 2)(9y^{2} - 6y + 4)$$

Example 2 Factoring by Grouping

Factor the polynomial $x^3 - 3x^2 - 4x + 12$.

Solution

$$x^{3} - 3x^{2} - 4x + 12$$

= $x^{2}(x - 3) - 4(x - 3)$ Factor by grouping.
= $(x^{2} - 4)(x - 3)$
= $(x - 2)(x + 2)(x - 3)$ Difference of squares

Example 3 Factoring Polynomials in Quadratic Form Factor (a) $16x^4 - 1$ and (b) $2x^6 - 10x^4 + 12x^2$. Solution a. $16x^4 - 1 = (\frac{4x^2}{2})^2 - \frac{1}{2}^2$ $= \frac{(4x^2 + 1)(4x^2 - 1)}{(4x^2 + 1)(2x - 1)(2x + 1)}$ b. $2x^6 - 10x^4 + 12x^2 = 2x^2(\frac{x^4 - 5x^2 + 6}{2x^2(x^2 - 3)(x^2 - 2)})$

Example 4	Colving o	Dolynomial	Equation
Example 4	JUIVIIIS a	ruynunnar	Lyuation

Solve $x^4 + 4 = 5x^2$.	
Solution	
$x^4 + 4 = 5x^2$	Write original equation.
$x^4 - 5x^2 + 4 = 0$	Rewrite in standard form.
$(x^2 - 4)(x^2 - 1) = 0$	Factor trinomial.
(x-2)(x+2)(x-1)(x+1) = 0	Factor difference of squares.
x = 2, x = -2, x = 1, or x = -1	Zero product property
The solutions are $-1, 1, -2$, and 2. Chec	k these in the

The solutions are -1, 1, -2, and 2. Check these in the original equation.

Checkpoint Factor each polynomial in Exercises 1–3.

1. <i>x</i> ³ + 216	2. $x^3 - x^2 - 2x + 2$
$(x + 6)(x^2 - 6x + 36)$	$(x^2 - 2)(x - 1)$
3. $x^4 - 7x^2 + 12$	
$(x^2 - 3)(x + 2)(x - 2)$	
4. Solve $x^5 - 2x = -x^3$.	
0, -1, 1	

Example 5 Solving a Polynomial Equation in Real Life

A rectangular swimming pool has a volume of 512 cubic feet. The pool's dimensions are x feet deep by 6x - 8 feet long by 6x - 16 feet wide. How deep is the pool?

	Verbal Model	Volume = Depth	Length	Width	
	Labels	Volume = <u>512</u>	(cubic feet)		
		$Depth = \underline{\mathbf{x}}$	(feet)		
		Length = $6x - 8$	(feet)		
		Width = $6x - 16$	(feet)		
	Algebraic	$512 = \frac{x(6x-8)(6x)}{x(6x-8)(6x)}$	<u>r – 16)</u>		
	WOUCI	$0 = 36x^3 - 144x$	² + 128 <i>x</i> - 512	Standard form	
lomework		$0 = 36x^2(x-4)$	+ 128(x - 4)	Factor by grouping.	
	$0 = (36x^2 + 128)(x - 4)$ The only real solution is $x = 4$, so $6x - 8 = 16$ and $6x - 16 = 8$. The pool is 4 feet deep. The dimensions are 4 feet by 16 feet by 8 feet.				