Factoring and Solving
 Polynomial Equations

Goals - Factor polynomial expressions.

- Use factoring to solve polynomial equations.

Your Notes

VOCABULARY

Factor by grouping A method used to factor some polynomials with pairs of terms that have a common monomial factor. The pattern is $r a+r b+s a+s b=$ $r(a+b)+s(a+b)=(r+s)(a+b)$.

Quadratic form The form $a u^{2}+b u+c$ where u is any expression in x

SPECIAL FACTORING PATTERNS

Sum of Two Cubes
$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
Example
$x^{3}+8=(x+2)\left(x^{2}-2 x+4\right)$
Difference of Two Cubes
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
Example
$8 x^{3}-1=(2 x-1)\left(4 x^{2}+2 x+1\right)$

Example 1 Factoring the Sum or Difference of Cubes

Factor each polynomial.
a. $x^{3}-64=x^{3}-\underline{4}^{3}$

$$
=(x-\underline{4})\left(x^{2}+4 x+16\right)
$$

b. $54 y^{4}+16 y=2 y\left(27 y^{3}+8\right)$

$$
\begin{aligned}
& =2 y\left[(\underline{3 y})^{3}+\underline{2}^{3}\right] \\
& =2 y(3 y+2)\left(9 y^{2}-6 y+4\right)
\end{aligned}
$$

Factor the polynomial $x^{3}-3 x^{2}-4 x+12$.

Solution

$$
\begin{array}{rlr}
x^{3}-3 x^{2}-4 x+12 & \\
= & x^{2}(x-3)-4(x-3) & \\
=\left(x^{2}-4\right)(x-3) & \text { Factor by grouping. } \\
=\underline{(x-2)(x+2)(x-3)} & & \text { Difference of squares }
\end{array}
$$

Example 3 Factoring Polynomials in Quadratic Form
Factor (a) $16 x^{4}-1$ and (b) $2 x^{6}-10 x^{4}+12 x^{2}$.

Solution

$$
\text { a. } \begin{aligned}
16 x^{4}-1 & =\left(4 x^{2}\right)^{2}-1^{2} \\
& =\left(4 x^{2}+1\right)\left(4 x^{2}-1\right) \\
& =\left(4 x^{2}+1\right)(2 x-1)(2 x+1)
\end{aligned}
$$

b. $2 x^{6}-10 x^{4}+12 x^{2}=2 x^{2}\left(x^{4}-5 x^{2}+6\right)$

$$
=\underline{2 x^{2}\left(x^{2}-3\right)\left(x^{2}-2\right)}
$$

Example 4 Solving a Polynomial Equation
Solve $x^{4}+4=5 x^{2}$.

Solution

$$
\begin{aligned}
& x^{4}+4=5 x^{2} \quad \text { Write original } \\
& \text { equation. } \\
& x^{4}-5 x^{2}+4=0 \quad \text { Rewrite in standard } \\
& \text { form. } \\
& \left(x^{2}-4\right)\left(x^{2}-1\right)=0 \\
& (x-2)(x+2)(x-1)(x+1)=0 \\
& x=\underline{2}, x=\underline{-2}, x=\underline{1}, \text { or } x=\underline{-1} \\
& \text { Rewrite in standard } \\
& \text { Factor trinomial. } \\
& \text { Factor difference of } \\
& \text { squares. } \\
& \text { Zero product } \\
& \text { property }
\end{aligned}
$$

The solutions are $-1,1,-2$, and 2 . Check these in the original equation.
$\begin{array}{ll}\text { 1. } x^{3}+216 & \text { 2. } x^{3}-x^{2}-2 x+2\end{array}$

$$
(x+6)\left(x^{2}-6 x+36\right) \quad\left(x^{2}-2\right)(x-1)
$$

3. $x^{4}-7 x^{2}+12$

$$
\left(x^{2}-3\right)(x+2)(x-2)
$$

4. Solve $x^{5}-2 x=-x^{3}$.
$0,-1,1$

Example 5 Solving a Polynomial Equation in Real Life

A rectangular swimming pool has a volume of 512 cubic feet. The pool's dimensions are x feet deep by $6 x-8$ feet long by $6 x-16$ feet wide. How deep is the pool?

$$
\begin{aligned}
& \begin{array}{l|l|}
\begin{array}{l}
\text { Verbal } \\
\text { Model }
\end{array} \text { Volume } & \text { Depth } \\
\hline
\end{array} \\
& \text { Labels } \quad \text { Volume }=512 \quad \text { (cubic feet) } \\
& \text { Depth }=\underline{x} \quad \text { (feet) } \\
& \text { Length }=\underline{6 x-8} \quad \text { (feet) } \\
& \text { Width }=\underline{6 x-16 \quad \text { (feet) }} \\
& \text { Algebraic } 512=\underline{x(6 x-8)(6 x-16)} \\
& \text { Model } \quad \mathbf{0}=\underline{36 x^{3}-144 x^{2}+128 x-512 \quad \text { Standard }} \\
& \text { form } \\
& 0=\underline{36 x^{2}(x-4)+128(x-4)} \quad \text { Factor by } \\
& \text { grouping. } \\
& 0=\underline{\left(36 x^{2}+128\right)(x-4)}
\end{aligned}
$$

The only real solution is $x=\underline{4}$, so $6 x-8=16$ and $6 x-16=8$. The pool is 4 feet deep. The dimensions are 4 feet by 16 feet by 8 feet.

